Description
If the prime factorization of x is x=p1k1p2k2⋯pnkn, define f(x)=(k1+1)(k2+1)⋯(kn+1). Compute ∑i=lrf(i) modulo 998244353.
The input contains a single line with two integers, representing l and r.
Output a single integer on one line representing the answer.
2 4
7
Hint
Constraints and Conventions
| Test point ID |
l |
r |
r−l |
| 1∼3 |
1≤l≤10 |
1≤r≤10 |
r−l=0 |
| 4∼7 |
1≤l≤50 |
1≤r≤50 |
| 8∼10 |
1≤l≤100 |
1≤r≤100 |
r−l<50 |
| 11∼16 |
1≤l≤500 |
1≤r≤500 |
No special restriction |
| 17∼25 |
1≤l≤103 |
1≤r≤103 |
| 26∼30 |
1≤l≤5×103 |
1≤r≤5×103 |
r−l<100 |
| 31∼40 |
1≤l≤104 |
1≤r≤104 |
No special restriction |
| 41∼60 |
1≤l≤107 |
1≤r≤107 |
| 61∼70 |
1≤l≤109 |
1≤r≤109 |
| 71∼90 |
1≤l≤1012 |
1≤r≤1012 |
| 91∼95 |
1≤l≤1013 |
1≤r≤1013 |
| 96∼97 |
1≤l≤2×1013 |
1≤r≤2×1013 |
r−l<1013 |
| 98∼99 |
1≤l≤1013 |
1≤r≤1014 |
r−l>9×1013 |
| 100 |
1≤l≤1014 |
1≤r≤1.6×1014 |
r−l>1014 |
Translated by ChatGPT 5