#P3263. [JLOI2015] 有意义的字符串

    ID: 2312 远端评测题 1000ms 125MiB 尝试: 0 已通过: 0 难度: 8 上传者: 标签>2015吉林矩阵乘法线性递推,递推式

[JLOI2015] 有意义的字符串

Description

Mr. B has two good friends, named Ningning and Ranran. One day, Ranran encountered an interesting problem: given three non-negative integers b,d,nb,d,n, compute

$$\left\lfloor \left ( \frac{b+\sqrt{d}}{2} \right ) ^n \right\rfloor \bmod p,$$

where p=7,528,443,412,579,576,937p=7,528,443,412,579,576,937.

Input Format

One line containing three non-negative integers bb, dd, and nn.

Output Format

Output a single integer denoting the result modulo 7,528,443,412,579,576,937.

3 13 5

393

5 29 114514

4997196309027367968

Hint

It is guaranteed that 0<b2d<(b+1)210180<b^2 \le d<(b+1)^2 \le 10^{18}, n1018n \le 10^{18}, and b1(mod2)b\equiv 1\pmod 2, d1(mod4)d\equiv 1\pmod 4.

Translated by ChatGPT 5