#P8872. [传智杯 #5 初赛] D-莲子的物理热力学
[传智杯 #5 初赛] D-莲子的物理热力学
题目背景
莲子正在研究分子的运动。
每个分子都有一个速度,约定正方向为正,负方向为负。分子的数量极多,速度又并不一致,看上去杂乱无章。于是莲子希望调整部分分子的速度,使得最终分子们看上去整齐。
题目描述
莲子给定了 个整数 ,描述每个分子。现在她可以进行至多 次操作(也可以一次也不进行),每次操作可以执行以下两条之一:
- 选择 ,满足 ,然后将 变为 。
- 选择 ,满足 ,然后将 变为 。
现在莲子希望需要最小化最终序列的极差(最大值减去最小值的差)。请求出最小的极差。
例如,对于序列 ,可以进行如下几次操作:
- 选择 ,满足 是当前的最大值 ,可以将 修改成当前的最小值 ,此时序列变成 ;
- 再选 ,满足 是当前的最小值 ,可以将 修改成当前的最大值 ,此时序列变成 。
这两次操作后得到的序列为 。最大值减去最小值的差为 。
当然,这种操作方式得到的极差并非最小。最优策略是,先将最大值 变成目前的最小值 ,再把此时的最大值 变成目前的最小值 。此时序列为 ,得到的极差 是所有策略中最小的。
输入格式
- 第一行有两个正整数 ,分别表示序列的长度和你最多可以进行的操作次数。
- 第二行有 个整数 ,描述给定的序列。
输出格式
- 输出共一行一个整数,表示最优策略下能得到的最小极差。
3 2
5 1 4
0
8 0
1 2 3 4 5 6 7 8
7
8 3
1 5 5 5 6 6 9 10
4
提示
样例解释
样例 :,极差为 。
样例 :,什么也做不了,极差为 。
样例 :$\{1,5,5,5,6,6,9,10\}\to\{10,5,5,5,6,6,9,10\}\to\{5,5,5,5,6,6,9,10\}\to\{5,5,5,5,6,6,9,5\}$,极差为 。
数据范围及约定
对于全部数据,保证 ,,。