#P7838. 「Wdoi-3」夜雀 treating

「Wdoi-3」夜雀 treating

题目背景

经历了一整天的磨难,米斯蒂娅终于迎来了这一天最后一位客人——蓬莱山辉夜。

作为永远亭的大小姐、月之都的公主,辉夜对于经营着平凡小吃摊的米斯蒂娅,向来是一个巨大的挑战。辉夜的口味极其挑剔,以至于米斯蒂娅常常难以满足她的需求。更棘手的是,如果辉夜认为米斯蒂娅招待不周,那么夜雀食堂的后果可能并不会比被幽幽子摧毁好多少。

于是可怜的小夜雀只能向你求助了。

题目描述

为了伺候这位主客,米斯蒂娅事先准备好了 2n+12n+1 种食材,并排成了一排,第 ii 种食材在左起第 ii 位,作为预选食材

接着,辉夜对所有食材进行了打分,每个食材被给予了一个在 [1,2n+1][1,2n+1] 当中的互不相等的分数。其中第 ii 种食材的评分为 AiA_i

由于月之民的奇怪癖好,辉夜喜欢一组连续的数字。因此,她对最终选出来的食材(不妨称为最终食材)的满意度,定义为将这些食材按照其评分从小到大排序后,其中最长评分连续的食材的长度。评分连续,也就是这些食材的评分形成了公差为 11 的等差数列。例如,{1,4,5,6,8,10,11}\{1,4,5,6,8,10,11\} 当中,能挑选出来的最长的评分连续的序列是 {4,5,6}\{4,5,6\},因此对于这套方案,辉夜的满意度是 33

然而喜欢看乐子的辉夜,决定使用一种诡异的选择方式来折磨米斯蒂娅——

  1. 设当前一共有 2k+12k+1 种食材。这些食材被依次排开,米斯蒂娅将这些食材从左到右依次编号为 1,2,3(2k+1)1,2,3\cdots (2k+1)
  2. 米斯蒂娅选择当前处于中间位置的材料(也就是编号为 k+1k+1 的材料),并加入最终食材。注意,加入最终食材的食材会被移出候选食材。
  3. 米斯蒂娅任选候选食材中的一种食材,并移除。保持剩余食材的相对位置不变。特别的,如果候选食材已空,那么米斯蒂娅不做任何操作。

米斯蒂娅将会不断进行 131\sim3 操作,直到最终食材当中已经有了恰好 n+1n+1 种食材。她想知道,如果按照最优的操作方案,辉夜能获得的最大的满意度是多少。

输入格式

第一行一个整数 nn

第二行 2n+12n + 1 个整数,表示每种食材的评分。

输出格式

一行一个整数,表示按照最优操作方案能得到的最大满意度。

3
4 7 3 6 1 2 5
3
7
1 15 2 14 3 13 4 12 5 11 6 10 7 9 8
8
1
1 2 3
2

提示

样例 1 解释

$$\def{\arraystretch}{1.7} \begin{array}{|c|c|c|c|}\hline \textbf{候选食材} & \textbf{选择} & \textbf{删除} & \textbf{最终食材} \cr\hline 4,7,3,6,1,2,5 & 6 & 1 & 6\cr \hline 4,7,3,2,5 & 3 & 7 & 3,6\cr \hline 4,2,5 & 2 & 5 & 2,3,6\cr \hline 4 & 4 & - & 2,3,4,6\cr \hline \end{array}$$

此时最终食材中最长连续食材编号为 {2,3,4}\{2,3,4\} ,长度为 33 。可以证明,没有更优方案。


数据范围及约定

$$\def{\arraystretch}{1.7} \begin{array}{|c|c|c|c|}\hline \textbf{Subtask} & \bm{n\le} & \textbf{特殊性质} & \textbf{分值} \cr\hline 1 & 5 & - & 10\cr\hline 2 & 200 & - & 15\cr\hline 3 & 800 & - & 15\cr\hline 4 & 5\times 10^3& - & 20\cr\hline 5 & 2\times 10^5& \text{A} & 5\cr\hline 6 & 2\times 10^5& - & 35\cr\hline \end{array} $$
  • 特殊性质 A :保证 i[1,2n+1]\forall i\in[1,2n+1]Ai=iA_i=i 。样例 3 即满足该性质。
  • 对于 100%100\% 的数据,有 1n2×1051 \leq n \leq 2 \times 10^5,并且 AA 是一个 12n+11 \sim 2n+1 的排列。