#P6512. [QkOI#R1] Quark and Flying Pigs

[QkOI#R1] Quark and Flying Pigs

题目描述

给定一个 nn 个点 mm 条边的边带权简单连通无向图,在 00 时刻你在点 11 上。

假设当前是 tt 时刻,你在点 vv 上,你可以选择两种操作:

  • 仍停留在点 vv 上,操作后到 t+1t+1 时刻。
  • 选择一条边 (a,b,w)(a,b,w) 满足 a=va=vb=vb=v,则你到这条边连接的另一个点上,操作后到 t+wt+w 时刻。

kk 条信息,每一条信息形如 (ti,vi)(t_i,v_i) 表示在 tit_i 时刻,点 viv_i 上会出现一只飞猪,其编号为 ii,若该时刻你在 viv_i 上,则你捕获到了 ii 号飞猪。

现在你需要求出你能捕获到的飞猪数量的最大值。

输入格式

第一行为三个正整数 n,m,kn,m,k

接下来 mm 行每行三个正整数 ai,bi,wia_i,b_i,w_i

接下来 kk 行每行两个正整数 ti,vit_i,v_i

输出格式

一行一个整数,为你能捕获到的飞猪数量的最大值。

2 1 5
1 2 2
1 2
2 2
3 2
5 1
7 2

4

提示

样例解释

最优方案如下:

00 时刻,选择移动到节点 22,时间来到 22 时刻。
22 时刻,捕获到第 22 只飞猪,选择停留在节点 22,时间来到 33 时刻。
33 时刻,捕获到第 33 只飞猪,选择移动到节点 11,时间来到 55 时刻。
55 时刻,捕获到第 44 只飞猪,选择移动到节点 22,时间来到 77 时刻。
77 时刻,捕获到第 55 只飞猪。

数据范围

对于 20%20\% 的数据,n,m,k7n,m,k\le 7
对于 100%100\% 的数据,2n2002\le n\le 2001mn(n1)21\le m\le \frac{n(n-1)}{2}1k50001\le k\le 50001ai,bi,vin1\le a_i,b_i,v_i\le n1wi10001\le w_i\le 10001ti1091\le t_i\le 10^9