Description
假设礼品店一共有 N 件礼物排成一列,每件礼物都有它的美观度。排在第 i (1≤i≤N) 个位置的礼物美观度为正整数 Ai。JYY 决定选出其中连续的一段,即编号为 i,i+1,⋯,j−1,j 的礼物。选出这些礼物的美观程度定义为
j−i+KM(i,j)−m(i,j)
其中 M(i,j) 表示 max{Ai,Ai+1,⋯,Aj},m(i,j) 表示 min{Ai,Ai+1,⋯,Aj},K 为给定的正整数。
由于不能显得太小气,所以 JYY 所选礼物的件数最少为 L 件;同时,选得太多也不好拿,因此礼物最多选 R 件。JYY 应该如何选择,才能得到最大的美观程度?由于礼物实在太多挑花眼,JYY 打算把这个问题交给会编程的你。
本题每个测试点有多组数据。
输入第一行包含一个正整数 T,表示有 T 组数据。
每组数据包含两行。第一行四个非负整数 N,K,L,R。第二行包含 N 个正整数,依次表示 A1,A2,⋯,An。
输出 T 行,每行一个非负实数,依次对应每组数据的答案,数据保证答案不
会超过 103。输出四舍五入保留 4 位小数。
1
5 1 2 4
1 2 3 4 5
0.7500
Hint
对于 100% 的数据,T≤10,N,K≤5×104,1≤Ai≤108,2≤L,R≤N。