#P3935. Calculating

Calculating

Description

If the prime factorization of xx is x=p1k1p2k2pnknx=p_1^{k_1}p_2^{k_2}\cdots p_n^{k_n}, define f(x)=(k1+1)(k2+1)(kn+1)f(x)=(k_1+1)(k_2+1)\cdots (k_n+1). Compute i=lrf(i)\sum_{i=l}^r f(i) modulo 998244353998\,244\,353.

Input Format

The input contains a single line with two integers, representing ll and rr.

Output Format

Output a single integer on one line representing the answer.

2 4
7

Hint

Constraints and Conventions

Test point ID ll rr rlr-l
131\sim 3 1l101\le l\le 10 1r101\le r\le 10 rl=0r-l=0
474\sim 7 1l501\le l\le 50 1r501\le r\le 50
8108\sim 10 1l1001\le l\le 100 1r1001\le r\le 100 rl<50r-l<50
111611\sim 16 1l5001\le l\le 500 1r5001\le r\le 500 No special restriction
172517\sim 25 1l1031\le l \le 10^3 1r1031\le r \le 10^3
263026\sim 30 1l5×1031\le l \le 5\times 10^3 1r5×1031\le r \le 5\times 10^3 rl<100r-l<100
314031\sim 40 1l1041\le l \le 10^4 1r1041\le r \le 10^4 No special restriction
416041\sim 60 1l1071\le l \le 10^7 1r1071\le r \le 10^7
617061\sim 70 1l1091\le l \le 10^9 1r1091\le r \le 10^9
719071\sim 90 1l10121\le l \le 10^{12} 1r10121\le r \le 10^{12}
919591\sim 95 1l10131\le l \le 10^{13} 1r10131\le r \le 10^{13}
969796\sim 97 1l2×10131\le l \le 2\times 10^{13} 1r2×10131\le r \le 2\times 10^{13} rl<1013r-l<10^{13}
989998\sim 99 1l10131\le l \le 10^{13} 1r10141\le r \le 10^{14} rl>9×1013r-l>9\times 10^{13}
100100 1l10141\le l \le 10^{14} 1r1.6×10141\le r \le 1.6\times 10^{14} rl>1014r-l>10^{14}

Translated by ChatGPT 5