#P3861. 拆分

拆分

Description

Given an integer nn, find the number of ways to factor nn into a product of pairwise distinct integers each at least 22. Output the answer modulo 998244353998244353.

Input Format

The first line contains an integer TT, the number of test cases. The next TT lines each contain an integer nn, as described.

Output Format

Output TT lines, each containing a single integer, the answer.

1
688
6

Hint

In the sample, because

$688 = 2 \times 4 \times 86= 2 \times 8 \times 43= 2 \times 344= 4 \times 172= 8 \times 86= 16 \times 43$

the answer is 66.

For 10%10\% of the testdata, nn is prime. For 20%20\% of the testdata, 2n1042 \leq n \leq 10^4. For 50%50\% of the testdata, 2n107 2 \leq n \leq 10^7. For 100%100\% of the testdata, 2n1012 2 \leq n \leq 10^{12}. All testdata satisfy 1T51 \leq T \leq 5.

Translated by ChatGPT 5