#P10605. 下头论文
下头论文
题目背景
莲子一直在苦恼关于论文的灵感。她为此花了太多时间,以至于没有时间理会她的伙伴梅莉。
题目描述
一天,莲子发现了一个绝妙的点子,并希望通过实验等过程将其完善。具体来说,她需要依次完成 项任务,其中第 项任务需要连续的 天来完成。也就是说,假设她在第 天开始该任务,那么她会在第 天结束后完成该任务,她需要保证这些天里她都是空闲的。
不幸的是,她有 天有各种事要去做,这些非空闲的日子会以一个单调递增序列 的形式给出。即,对于任意的 ,满足 。
莲子希望完成任务的时间越短越好。例如:不妨假设,莲子要完成 项任务,第一项耗时 天,第二项耗时 天,而第 天莲子有事情要去做。则下图呈现了一种方案,使得莲子完成任务的时间尽可能短,为 天:
她想要知道,在最好情况下,她能在第几天结束后完成所有任务。
输入格式
第一行两个整数 。
第二行 个正整数描述序列 。
第三行 个正整数描述序列 。保证 为单调递增序列。
输出格式
一行一个整数,表示莲子最快能在第几天结束后完成所有任务。
2 1
2 3
4
7
3 3
1 1 1
1 5 6
4
提示
样例解释
样例 #1
即在题面中提及的情况。莲子在第 天开始第一项任务,在第 天结束后完成第一项任务。由于第 天有事,她不能从第 天开始第二项任务,于是她只好从第 天开始该任务,在第 天结束时完成全部任务。
注意到该样例符合 的特殊性质。
样例 #2
莲子在第 至第 天依次完成了所有任务。
数据范围
本题采用捆绑测试。每一个 Subtask 内的测试点均需通过才能获得该 Subtask 的分数。
简记: 为所有 的和,即 。其他试题中若无特殊说明也以此解释为准。
$$\def\arraystretch{1.5} \begin{array}{|c|c|c|c|c|c|c|}\hline \textbf{Subtask} & \textbf{\textsf{分值}} & \bm{n,m\le } & \bm{\sum a_i\le} & \bm{b_i\le} & \textbf{\textsf{特殊性质}}&\textbf{Subtask \textsf{依赖}}\cr\hline 1 & 20 & 10 & 100 & 100 & - &-\cr\hline 2 & 20 & 10^5 & 10^8 & 10^8 & m=1&- \cr\hline 3 & 20 & 10^3 & 10^8 & 10^8 & \mathbf{-}&- \cr\hline 4 & 40 & 10^5 & 10^8 & 10^8& -&1,2,3 \cr\hline \end{array} $$对于所有数据满足:,, , 为单调递增序列。