题目描述
对于一个递归函数 w(a,b,c)
- 如果 a≤0 或 b≤0 或 c≤0 就返回值1。
- 如果 a>20 或 b>20 或 c>20 就返回 w(20,20,20)
- 如果 a<b 并且 b<c 就返回w(a,b,c−1)+w(a,b−1,c−1)−w(a,b−1,c)。
- 其它的情况就返回 $w(a-1,b,c)+w(a-1,b-1,c)+w(a-1,b,c-1)-w(a-1,b-1,c-1)$
这是个简单的递归函数,但实现起来可能会有些问题。当 a,b,c 均为 15 时,调用的次数将非常的多。你要想个办法才行。
注意:例如 w(30,−1,0) 又满足条件 1 又满足条件 2,请按照最上面的条件来算,答案为 1。
输入格式
会有若干行。
并以 −1,−1,−1 结束。
保证输入的数在 [−9223372036854775808,9223372036854775807] 之间,并且是整数。
输出格式
输出若干行,每一行格式:
w(a, b, c) = ans
注意空格。
1 1 1
2 2 2
-1 -1 -1
w(1, 1, 1) = 2
w(2, 2, 2) = 4