#NOIP2011I. 聪明的质监员

聪明的质监员

题目描述

小T 是一名质量监督员,最近负责检验一批矿产的质量。这批矿产共有 nn 个矿石,从 11nn 逐一编号,每个矿石都有自己的重量 wiw_i 以及价值 viv_i 。检验矿产的流程是:

1 、给定m m 个区间 [li,ri][l_i,r_i]

2 、选出一个参数 WW

3 、对于一个区间 [li,ri][l_i,r_i],计算矿石在这个区间上的检验值 yiy_i

$$y_i=\sum\limits_{j=l_i}^{r_i}[w_j \ge W] \times \sum\limits_{j=l_i}^{r_i}[w_j \ge W]v_j$$

其中 jj 为矿石编号。

这批矿产的检验结果 yy 为各个区间的检验值之和。即:i=1myi\sum\limits_{i=1}^m y_i

若这批矿产的检验结果与所给标准值 ss 相差太多,就需要再去检验另一批矿产。小T 不想费时间去检验另一批矿产,所以他想通过调整参数 WW 的值,让检验结果尽可能的靠近标准值 ss,即使得 sy|s-y| 最小。请你帮忙求出这个最小值。

输入格式

第一行包含三个整数 n,m,sn,m,s,分别表示矿石的个数、区间的个数和标准值。

接下来的 nn 行,每行两个整数,中间用空格隔开,第 i+1i+1 行表示 ii 号矿石的重量 wiw_i 和价值 viv_i

接下来的 mm 行,表示区间,每行两个整数,中间用空格隔开,第 i+n+1i+n+1 行表示区间 [li,ri][l_i,r_i] 的两个端点 lil_irir_i。注意:不同区间可能重合或相互重叠。

输出格式

一个整数,表示所求的最小值。

5 3 15 
1 5 
2 5 
3 5 
4 5 
5 5 
1 5 
2 4 
3 3 
10

提示

【输入输出样例说明】

WW44 的时候,三个区间上检验值分别为 20,5,020,5 ,0 ,这批矿产的检验结果为 2525,此时与标准值 SS 相差最小为 1010

【数据范围】

对于 10%10\% 的数据,有 1n,m101 ≤n ,m≤10

对于 30%30\% 的数据,有 1n,m5001 ≤n ,m≤500

对于 50%50\% 的数据,有 1n,m5,000 1 ≤n ,m≤5,000

对于 70%70\% 的数据,有 1n,m10,0001 ≤n ,m≤10,000

对于 100%100\% 的数据,有 1n,m200,000 1 ≤n ,m≤200,0000<wi,vi1060 < w_i,v_i≤10^60<s10120 < s≤10^{12}1lirin1 ≤l_i ≤r_i ≤n