#743. [Sdoi2013]淘金

[Sdoi2013]淘金

Description

小Z在玩一个叫做《淘金者》的游戏。游戏的世界是一个二维坐标。X轴、Y轴坐标范围均为1..N。初始的时候,所有的整数坐标点上均有一块金子,共N*N块。 一阵风吹过,金子的位置发生了一些变化。细心的小Z发现,初始在(i,j)坐标处的金子会变到(f(i),fIj))坐标处。其中f(x)表示x各位数字的乘积,例如f(99)=81,f(12)=2,f(10)=0。如果金子变化后的坐标不在1..N的范围内,我们认为这块金子已经被移出游戏。同时可以发现,对于变化之后的游戏局面,某些坐标上的金子数量可能不止一块,而另外一些坐标上可能已经没有金子。这次变化之后,游戏将不会再对金子的位置和数量进行改变,玩家可以开始进行采集工作。 小Z很懒,打算只进行K次采集。每次采集可以得到某一个坐标上的所有金子,采集之后,该坐标上的金子数变为0。 现在小Z希望知道,对于变化之后的游戏局面,在采集次数为K的前提下,最多可以采集到多少块金子? 答案可能很大,小Z希望得到对1000000007(10^9+7)取模之后的答案。

Format

Input

共一行,包含两介正整数N,K。

Output

一个整数,表示最多可以采集到的金子数量。

Samples

1 2 5
18

Limitation

N < = 10^12 ,K < = 100000

对于100%的测试数据:K < = N^2