#4860. 2020年CSP-S 初赛试题

一、单选题(共15题,每题2分,共计30分;每题有且只有一个正确选项。)

  1. 请选出以下最大的数( )。
  1. 操作系统的功能是( )
  1. 现有一段 88 分钟的视频文件,它的播放速度是每秒 2424 帧图像,每帧图像是 一幅分辨率为 2048×10242048\times 1024 像素的 3232 位真彩色图像。请问要存储这段原始无压缩视频,需要多大的存储空间?( )。
  1. 今有一空栈 SS,对下列待进栈的数据元素序列 a,b,c,d,e,fa,b,c,d,e,f 依次进行:进栈,进栈,出栈,进栈,进栈,出栈的操作,则此操作完成后,栈底元素为( )。
  1. (2,7,10,18)(2,7,10,18) 分别存储到某个地址区间为 0100\sim 10 的哈希表中,如果哈希函数 h(x)=()h(x)=( ),将不会产生冲突,其中 amodba \bmod b 表示 aa 除以 bb 的余数。
  1. 下列哪些问题不能用贪心法精确求解?( )
  1. 具有 nn 个顶点,ee 条边的图采用邻接表存储结构,进行深度优先遍历运算的时间复杂度为( )。
  1. 二分图是指能将顶点划分成两个部分,每一部分内的顶点间没有边相连的简单无向图。那么,2424 个顶点的二分图至多有( )条边。
  1. 广度优先搜索时,一定需要用到的数据结构是( )
  1. —个班学生分组做游戏,如果每组三人就多两人,每组五人就多三人,每组七人就多四人,问这个班的学生人数 nn 在以下哪个区间?已知 n<60n<60。( )
  1. 小明想通过走楼梯来锻炼身体,假设从第 11 层走到第 22 层消耗 1010 卡热量,接着从第 22 层走到第 33 层消耗 2020 卡热量,再从第 33 层走到第 44 层消耗 3030 卡热量,依此类推,从第 kk 层走到第 k+1k+1 层消耗 10k10k 卡热量 (k>1)(k>1)。如果小明想从 11 层开始,通过连续向上爬楼梯消耗 10001000 卡热量,至少要爬到第几层楼? ( )。
  1. 表达式 a*(b+c)-d 的后缀表达形式为( )。
  1. 从一个 4×44 \times 4 的棋盘中选取不在同一行也不在同一列上的两个方格,共有( )种方法。
  1. 对一个 nn 个顶点、mm 条边的带权有向简单图用 Dijkstra 算法计算单源最短路时,如果不使用堆或其它优先队列进行优化,则其时间复杂度为( )。
  1. 1948 年,( )将热力学中的熵引入信息通信领域,标志着信息论研究的开端。

二、阅读程序(程序输入不超过数组或字符串定义的范围;判断题正确填 √,错误填 ×;除特殊说明外,判断题 1.5 分,选择题 3 分,共计 40 分)

假设输入的 nnd[i]d[i] 都是不超过 1000010000 的正整数,完成下面的判断题和单选题:

判断题

nn 必须小于 10001000,否则程序可能会发生运行错误。( )

输出一定大于等于 00。( )

若将第 13 行的 j=0 改为 j = i + 1 程序输出可能会改变。 ( )

将第 14 行的 d[i] < d[j] 改为 d[i] != d[j],程序输出不会改变。( )

单选题

若输入 nn100100,且输出为 127127,则输入的 d[i]d[i] 中不可能有( )。

若输出的数大于 00,则下面说法正确的是( )。

假设输入的 n,kn,kd[i]d[i] 都是不超过 1000010000 的正整数,且 kk 不超过 nn,并假设 rand() 函数产生的是均匀的随机数,完成下面的判断题和单选题:

判断题

第 9 行的 xx 的数值范围是 L+1L+1RR,即 [L+1,R][L+1,R]。( )

将第 1919 行的 d[a] 改为 d[b],程序不会发生运行错误。( )

单选题

(2.5 分)当输入的 d[i]d[i] 是严格单调递增序列时,第 17 行的 swap 平均执行次数是( )。【注意:本题为错题,选A即可】

(2.5 分)当输入的 d[i]d[i] 是严格单调递减序列时,第 17 行的 swap 平均执行次数是( )。

(2.5 分)若输入的 d[i]d[i]ii,此程序①平均的时间复杂度和②最坏情况下的时间复杂度分别是( )。

(2.5 分)若输入的 d[i]d[i] 都为同一个数,此程序平均的时间复杂度是( )。

判断题

输出可能为 00。( )

若输入的两个字符串长度均为 101101 时,则 m=0m=0 时的输出与 m=100m=100 时的输出是一样的。( )

若两个字符串的长度均为 nn,则最坏情况下,此程序的时间复杂度为 O(n!)O(n!)。( )

单选题

(2.5 分)若输入的第一个字符串长度由 100100 个不同的字符构成,第二个字符串是第一个字符串的倒序,输入的 mm00,则输出为( )。

(4 分)己知当输入为 0123\n3210\n10123\n3210\n1 时输出为 44,当输入为 012345\n543210\n1012345\n543210\n1 时输出为 1414,当输入为 01234567\n76543210\n101234567\n76543210\n1 时输出为 2828,则当输入为0123456789ab\nba9876543210\n10123456789ab\nba9876543210\n1 输出为 ( )。其中 \n 为换行符。

(4 分)若两个字符串的长度均为 nn,且 0<m<n10<m<n-1,且两个字符串的构成相同(即任何一个字符在两个字符串中出现的次数均相同),则下列说法正确的是( )。提示:考虑输入与输出有多少对字符前后顺序不一样。

三、完善程序(单选题,每小题 3 分,共计 30 分)

1.(分数背包)小 S 有 nn 块蛋糕,编号从 11nn。第 ii 块蛋糕的价值是 wiw_i,体积是 viv_i。他有一个大小为 BB 的盒子来装这些蛋糕,也就是说装入盒子的蛋糕的体积总和不能超过 BB。他打算选择一些蛋糕装入盒子,他希望盒子里装的蛋糕的价值之和尽量大。

为了使盒子里的蛋糕价值之和更大,他可以任意切割蛋糕。具体来说,他可以选择一个 a(0<a<l)a(0<a<l),并将一块价值是 ww,体积为 vv 的蛋糕切割成两 块,其中一块的价值是 a×wa\times w,体积是 a×va\times v,另一块的价值是(1a)×w(1-a)\times w,体积是 (1a)×v(1-a)\times v。他可以重复无限次切割操作。

现要求编程输出最大可能的价值,以分数的形式输出。

比如 n=3,B=8n=3,B=8,三块蛋糕的价值分别是 4,4,24,4,2,体积分别是 5,3,25,3,2。那么最优的方案就是将体积为 55 的蛋糕切成两份,一份体积是 33,价值是 2.42.4,另一份体积是 22,价值是 1.61.6,然后把体积是 33 的那部分和后两块蛋糕打包进盒子。最优的价值之和是 8.48.4,故程序输出 425\dfrac{42}{5}

输入的数据范围为:1n10001\leq n\leq 10001B1051\leq B\leq 10^51wi,vi1001\leq w_i,v_i\leq 100

提示:将所有的蛋糕按照性价比 wivi\dfrac{w_i}{v_i} 可从大到小排序后进行贪心选择。

试补全程序。

①处应填( )

②处应填( )

③处应填( )

④处应填( )

⑤处应填( )

(最优子序列)取 m=16m = 16,给出长度为 nn 的整数序列 a1,a2,,an(0ai<2m)a_1,a_2,\dots,a_n(0 \le a_i < 2^m)。对于一个二进制数 xx,定义其分值 w(x)w(x)x+popcnt(x)x + \operatorname {popcnt}(x),其中 popcnt(x)\operatorname{popcnt}(x) 表示 xx 二进制表示中 11 的个数。对于一个子序列 b1,b2,,bkb_1,b_2,\dots,b_k,定义其子序列分值 SSw(b1b2)+w(b2b3)+w(b3b4)++w(bk1bk)w(b_1 \oplus b_2) + w(b_2 \oplus b_3) + w(b_3 \oplus b_4) + \cdots + w(b_{k-1} \oplus b_k)。其中 \oplus 表示按位异或。对于空子序列,规定其子序列分值为 00 求一个子序列使得其子序列分值最大,输出这个最大值。

输入第一行包含一个整数n(1n40000) n(1 \le n \le 40000) 接下来一行包含 nn 个整数 a1,a2,,ana_1,a_2,\cdots,a_n

提示:考虑优化朴素的动态规划算法,将前 m2\dfrac{m}{2} 位和后 m2\dfrac{m}{2} 位分开计算。

Max[x][y] 表示当前的子序列下一个位置的高 88 位是 xx、最后一个位置的低 88 位是 yy 时的最大价值。

试补全程序。

①处应填( )

②处应填( )

③处应填( )

④处应填( )

⑤处应填( )

参考答案(请提交答案后再看)