#3543. JLOI2010]足彩投注
JLOI2010]足彩投注
Description
南非世界杯离我们越来越近了,与足球有紧密联系的足球彩票也越来越引起了人们的强烈关注。
了解足球彩票的人可能知道,足球彩票中有一种游戏叫做“胜负彩”,意为猜比赛的胜负。下面是一些与胜负彩有关的术语:
**注 ** :每一组有效组合数据。
**投 注** :彩民以现金购买足球彩票的行为。
单式投注 :彩民对于所有球队的比赛成绩均只选择一种预测结果的投注方式。投注的数量(注数)为1。
复式投注 :彩民对于某些场次的比赛成绩选择两种以上的预测结果的投注方式。投注的数量为复式投注的组合数。例如,某彩民对一场比赛预测了两个结果(例如,胜平),另一场比赛预测了三个结果(胜负平),其他比赛都只预测了一种结果,那么注数就是2×3 = 6。这样的一个复式投注,可以看成一个包含六种单式投注的集合。
胜负彩的玩法一般是这样的。彩票机构指定一轮比赛中的若干场,让彩民去猜每场比赛的结果(胜、负、平)。根据彩民猜中比赛的场次,来确定中奖的额度。
我们现在考虑一个简化的模型。对于一轮比赛,彩民需要竞猜其中n场比赛的结果,每场比赛的胜负平都有一个概率 p ( i , r )。其中,i表示第i场比赛。r = 0, 1, 2,分别表示比赛结果的(主队)负、平、胜。 p ( i , r )则表示第i场比赛、结果为r的概率。此外,还有一个概率 q ( i , r ),表示第i场比赛,投注购买结果为r的概率。
例如,如果 q (1,0) = 0.5,我们可以知道第一场比赛有50%的投注会买主队输球。我们假设这n场比赛互不相关,即 p ( i , r )的结果不会受 p ( j , r’)的影响, q ( i , r )的结果也不会受 q ( j , r’)的影响(r ≠ r’)。
在这个模型里,我们规定,必须猜中全部*n*场比赛的结果才能获奖。总奖金为 *M* ,由所有获奖的投注平分。**因此,对于一个单式投注*R~i~* = {*r~i~* ~1~ , *r~i~* ~2~ , ** **…** **, *r~in~* }** **,*r~ij~***表示投注*R~i~*对第*j*场比赛的预测结果,它的中奖概率为:
设投注总数为 N ,那么中奖的投注总数为:
于是,投注*R~i~*所能得到的奖金的期望(平均意义下能够获得的奖金数)就是:
以上考虑的仅仅是单式投注的情况,即仅考虑单注*R~i~*的中奖情况。对于复式投注,情况要复杂一些。采用复式投注时,投注的是一个集合*R* = {*R* ~1~ , *R* ~2~ , …, *R~k~* },其中*k*是投注的数量。例如,三场比赛,第一场猜“胜负”,第二场猜“平”,第三场猜“负平”,则*k* = 4,*R*集合如下:
复式投注R中,只要有一个R~i~猜对所有比赛结果,即可中奖。因此,复式投注R所能获得的奖金的期望就是:
我们的问题是,给定n场比赛的信息(胜负平的概率和彩民购买三种结果的概率),以及复式投注中可以购买的最大注数 U ,要求设计一种复式投注的方案,在不超过最大注数(复式投注的注数k ≤ U)的前提下,使得获得奖金的期望最大。
Format
Input
第一行四个整数 n, N, M, U ( n , U ≤ 10 ^4^ , N , M ≤ 10^9^)。
以下*n*行,每行六个实数。第*i* + 1行的六个实数为 *p* ( *i* , 0), *p* ( *i* , 1), *p* ( *i* , 2), *q* ( *i* , 0), *q* ( *i* , 1)和 *q* ( *i* , 2),用来描述第*i*场比赛的相关信息。其中, *p* ( *i* , 0) + *p* ( *i* , 1) + *p* ( *i* , 2) = 1, *q* ( *i* , 0) + *q* ( *i* , 1) + *q* ( *i* , 2) = 1, *q* ( *i* , *j* ) ≠ 0。
Output
Samples
1 10 10 1
0.3 0.2 0.5 0.7 0.2 0.1
1.609