#2638. [中山市选2010]三核苷酸

[中山市选2010]三核苷酸

Background

Special for beginners, ^_^

Description

三核苷酸是组成DNA序列的基本片段。具体来说,核苷酸一共有4种,分别用’A’,’G’,’C’,’T’来表示。而三核苷酸就是由3个核苷酸排列而成的DNA片段。三核苷酸一共有64种,分别是’AAA’,’AAG’,…,’GGG’。给定一个长度为L的DNA序列,一共可以分辨出(L-2)个三核苷酸。现在我们想用一些统计学的方法来进行一些分析,步骤如下:

  1. 对于这(L-2)个三核苷酸,我们从左到右给予编号,分别为1到L-2。
    
  2. 从这(L-2)个三核苷酸挑选一对出来,一共有(L-2)*(L-3)/2种可能。如果某一对三核苷酸是一样的,我们就记录他们之间的距离。他们之间的距离定义为他们的编号之差。
    
  3. 根据我们所记录的“样本数据”,我们现在需要计算样本数据的方差。方差的计算公式是S2=[(x ~1~ -X) ^ 2^ +(x ~2~ -X) ^ 2^ +…+(x ~n~ -X) ^2^ ]/n, X=(x ~1~ +x ~2~ +…+x ~n~ )/n。如果样本的大小n=0,那么我们认为S2=X=0。
    

例如,我们要统计DNA序列’ATATATA’:

  1. 为三核苷酸编号. L ~1~ : ATA, L ~2~ :TAT, L ~3~ :ATA, L ~4~ :TAT, L ~5~ :ATA.
    
  2. (L ~1~ ,L ~3~ )=2, (L ~1~ ,L ~5~ )=4, (L ~3~ ,L ~5~ )=2, (L ~2~ ,L ~4~ )=2. 所以样本数据是2,4,2,2.
    
  3. 样本数据平均值X=(2+4+2+2)/4=2.5.
    

方差S2=[(2-2.5) ^2^ +(4-2.5) ^ 2^ +(2-2.5) ^2^ +(2-2.5) ^2^ ]/4=0.75.

给定一个DNA序列,请你计算出它的方差。

Format

Input

输入包含多组测试数据。第一行包含一个正整数T,表示测试数据数目。每组数据包含一个由’A’,’G’,’C’,’T’组成的字符串,代表要统计的DNA序列。DNA序列的长度大于等于3且不会超过100000。

Output

对每组测试数据,输出一行答案,为一个保留6位精度的实数,代表S2的值。如果你的答案和标准答案的“相对误差”小于1e-8,你的答案会被视为正确的答案。

Samples

1
ATATATA
0.750000

Limitation

1s, 1024KiB for each test case.