#P9717. [EC Final 2022] Binary String

[EC Final 2022] Binary String

题目描述

You are given a binary string a0a1a2an1a_0a_1a_2\dots a_{n-1} arranged on a cycle. Each second, you will change every 0101 to 1010 simultaneously. In other words, if ai=0a_i = 0 and a(i+1)modn=1a_{(i+1) \bmod n} = 1, you swap aia_i and a(i+1)modna_{(i+1)\bmod n}. For example, we will change 100101110\texttt{100101110} to 001010111\texttt{001010111}.

You need to answer how many different strings will occur in infinite seconds, modulo 998244353998244353.

Note: Two strings a0a1an1a_0a_1\dots a_{n-1} and b0b1bn1b_0b_1\dots b_{n-1} are different if there exists an integer i{0,1,,n1}i\in \{0,1,\ldots, n-1\} such that aibia_i\neq b_i. Thus, the cyclic shifts of a string may be different from the original string.

输入格式

The first line contains an integer TT (1T106)(1\leq T\leq 10^6) - the number of test cases.

For each test case, the first line contains a binary string a0a1an1a_0 a_1 \dots a_{n-1} (ai{0,1})(a_i \in \{0, 1\}).

It is guaranteed that the sum of lengths of strings over all test cases does not exceed 10710^7.

输出格式

For each test case, output one integer representing the answer in one line.

题目大意

【题目描述】

给定一个排列在环上的二进制字符串 a0a1a2an1a_0a_1a_2\dots a_{n-1}。每一秒钟,你会同时将每个 0101 变为 1010。换句话说,如果 ai=0a_i = 0a(i+1)modn=1a_{(i+1) \bmod n} = 1,则交换 aia_ia(i+1)modna_{(i+1)\bmod n}。例如,我们将 100101110\texttt{100101110} 变为 001010111\texttt{001010111}

你需要回答在无限秒内会出现多少种不同的字符串,取模 998244353998244353

注意:如果存在整数 i{0,1,,n1}i\in \{0,1,\ldots, n-1\} 使得 aibia_i\neq b_i,则两个字符串 a0a1an1a_0a_1\dots a_{n-1}b0b1bn1b_0b_1\dots b_{n-1} 是不同的。因此,字符串的循环移位可能与原始字符串不同。

【输入格式】

第一行包含一个整数 TT (1T106)(1\leq T\leq 10^6) - 测试用例的数量。

对于每个测试用例,第一行包含一个二进制字符串 a0a1an1a_0 a_1 \dots a_{n-1} (ai{0,1})(a_i \in \{0, 1\})

保证所有测试用例中字符串长度的总和不超过 10710^7

【输出格式】

对于每个测试用例,输出一行一个整数,表示答案。

翻译来自于:ChatGPT

3
1
001001
0001111
1
3
9