题目描述
图 G 是一个无向连通图,没有自环,并且两点之间至多只有一条边。我们定义顶点 v,u 的最短路径就是从 v 到 u 经过边最少的路径。所有包含在 v−u 的最短路径上的顶点被称为 v−u 的 Geodetic 顶点,这些顶点的集合记作 I(v,u)。
我们称集合 I(v,u) 为一个 Geodetic 集合。
例如下图中,I(2,5)={2,3,4,5},I(1,5)={1,3,5},I(2,4)={2,4}。

给定一个图 G 和若干点对 v,u,请你分别求出 I(v,u)。
输入格式
第一行为两个整数 n,m,分别表示图 G 的顶点数和边数(顶点编号为 1∼n)。
接下来 m 行,每行两个整数 a,b,表示 顶点 a 和 b 之间有一条无向边。
第 m+2 行有一个整数 k,表示给定的点对数。
接下来 k 行,每行两个整数 v,u,表示每个点对的起点和终点。
输出格式
共 k 行,对于输入文件中每一个点对 v,u,按顶点顺序一行输出 I(v,u) 里面的所有点的编号。
提示
对于所有数据,满足 1⩽n⩽40,1⩽m⩽2n(n−1)。