#P1400. [CERC2016] Easy Equation

[CERC2016] Easy Equation

Description

Given an integer kk greater than 11, it is possible to prove that there are infinitely many triples of positive integers (a,b,c)(a, b, c) that satisfy the following equation:

a2+b2+c2=k(ab+bc+ca)+1a^2+b^2+c^2=k(ab+bc+ca)+1

Given positive integers nn and kk, find nn arbitrary triples $(a_1, b_1, c_1), (a_2, b_2, c_2), \cdots , (a_n, b_n, c_n)$ that all satisfy the equation. Furthermore, all 3n3n integers $(a_1, b_1, c_1), (a_2, b_2, c_2), \cdots , (a_n, b_n, c_n)$ should be different positive integers with at most 100100 decimal digits each.

Input Format

The first line contains two integers kk and n  (2k1000,1n1000)n\;(2 \leq k \leq 1000, 1 \leq n \leq 1000) — the constant k in the equation and the target number of triples.

Output Format

Output nn lines. The ii-th line should contain three space separated integers aia_i, bib_i and cic_i with at most 100100 digits each — the ii-th of the solutions you found.

2 8
1 2 6
3 10 24
12 35 88
15 28 84
4 5 18
14 33 90
40 104 273
21 60 152
3 3
1 3 12
8 21 87
44 165 615