#P1487G. String Counting
String Counting
Description
You have $c_1$ letters 'a', $c_2$ letters 'b', ..., $c_{26}$ letters 'z'. You want to build a beautiful string of length $n$ from them (obviously, you cannot use the $i$-th letter more than $c_i$ times). Each $c_i$ is greater than $\frac{n}{3}$.
A string is called beautiful if there are no palindromic contiguous substrings of odd length greater than $1$ in it. For example, the string "abacaba" is not beautiful, it has several palindromic substrings of odd length greater than $1$ (for example, "aca"). Another example: the string "abcaa" is beautiful.
Calculate the number of different strings you can build, and print the answer modulo $998244353$.
The first line contains one integer $n$ ($3 \le n \le 400$).
The second line contains $26$ integers $c_1$, $c_2$, ..., $c_{26}$ ($\frac{n}{3} < c_i \le n$).
Print one integer — the number of strings you can build, taken modulo $998244353$.
Input
The first line contains one integer $n$ ($3 \le n \le 400$).
The second line contains $26$ integers $c_1$, $c_2$, ..., $c_{26}$ ($\frac{n}{3} < c_i \le n$).
Output
Print one integer — the number of strings you can build, taken modulo $998244353$.
Samples
4
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
422500
3
2 2 2 2 2 2 3 3 3 2 2 2 2 2 2 3 3 3 2 2 3 2 2 3 2 2
16900
400
348 322 247 158 209 134 151 267 268 176 214 379 372 291 388 135 147 304 169 149 193 351 380 368 181 340
287489790
京公网安备 11011102002149号