#P1194. [HNOI2006]潘多拉的盒子
[HNOI2006]潘多拉的盒子
Description
传说中,有个神奇的潘多拉宝盒。如果谁能打开,便可以拥有幸福、财富、爱情。可是直到真的打开,才发现与之
相随的还有灾难、不幸。其实,在潘多拉制造这个宝盒的时候,设置了一些咒语来封锁住灾难与不幸。然而,直到
科技高度发达的今天,人们才有希望弄懂这些咒语。所以说,上千年来,人们只得忍受着各种各样的疾病和死亡的
痛苦。然而,人类的命运从此改变了。经过数十年的研究,NOI组织在最近终于弄清楚了潘多拉咒语的原理。咒语
是由一个叫做咒语机的机器产生的。用现在的名词来解释,咒语机其实就是一个二进制产生器,它产生的一个二进
制字符串(这个字符串叫做咒语源)经加密后就形成了咒语。二进制产生器的结构是这样的:它由n个元件组成,
不妨设这n个元件的标号为0到n-1。在每个时刻,都有且仅有一个信号,它停留在某个元件上。一个信号就是一个
二进制字符串。最开始,有一个空串信号停留在元件0上。在某个时刻,如果有一个信号s停留在元件I上,那么,
这时元件i可以将信号后面加一个0,然后把信号传给元件pi,0,也可以将信号后面加一个1,然后传给元件pi,1。也
就是说,下一个时刻有可能,一种可能是一个信号S0(表示字串S后面加一个0形成的字串)仪在元件pi,0上,另一
种可能是有一个信号S1停留在元件pi,1上。有的元件可以将停留在它上面的信号输出,而输出的信号就成为了咒语
源,这样的元件叫做咒语源输出元。不难发现,有些口语源是可能由一个咒语机产生的,而另一些咒语源则不行。
例如,下图的咒语机能产生1,11,111,1111,...等咒语源,但是不能产生0,10,101等咒语源。在这个盒子上,有K个
咒语机,不妨将这些咒语机从0到K-1标号。可能有这种情况,一个咒语机i能够产生的口语源,咒语机j都能产生。
这时,我们称咒语机j是咒语机i的升级。而衡量这个例子的复杂程度的一种办法是:看这个盒子上升级次数最多的
一个咒语机。即:找到一个最长的升级序列a1,a2...at。该升级序列满足:序列中任意两个咒语机的标号都不同,
且都是0到k-1(包含0和k-1)之间的整数,且咒语机a~2~是咒语机a~1~的升级,咒语机a~3~是咒语机a~2~的升级...,咒语
机a~t~是咒语机a~t-1~的升级。你想远离灾难与不幸吗?你想从今以后沐浴幸福的阳光吗?请打开你的潘多拉之盒吧。
不过在拱形它之前,你先得计算一下宝盒上最长的升级序列。
Input
第一行是一个正整数S,表示宝盒上咒语机的个数,(1≤S≤50)。
文件以下分为S块,每一块描述一个咒语机,按照咒语机0,咒语机1...咒语机S-1的顺序描述。
每一块的格式如下。
一块的第一行有两个正整数n,m。分别表示该咒语机中元件的个数、咒语源输出元的个数
(1≤m≤n≤50)。
接下来一行有m个数,表示m个咒语源输出元的标号(都在0到n-1之间)。
接下来有n行,每一行两个数。第i行(0≤i≤n-1)的两个数表示pi,0和pi,1
(当然,都在0到n-1之间)。
Output
第一行有一个正整数t,表示最长升级序列的长度。
Samples
4
1 1
0
0 0
2 1
0
1 1
0 0
3 1
0
1 1
2 2
0 0
4 1
0
1 1
2 2
3 3
0 0
3